Re-REVISED paper:E-90280-2008R2 Contractile C2C12 Myotube Model for Studying Exercise-inducible Responses in Skeletal Muscle
نویسندگان
چکیده
Adequate exercise leads to a vast variety of physiological changes in skeletal muscle as well as other tissues/organs and is also responsible for maintaining healthy muscle displaying enhanced insulin-responsive glucose uptake via GLUT4 translocation. We generated highly developed contractile C2C12 myotubes, by manipulating intracellular Ca 2+ transients with electric pulse stimulation (EPS), that are endowed with properties similar to those of in vivo skeletal muscle in terms of (1) excitation-induced contractile activity as a result of de novo sarcomere formation, (2) activation of both the AMP-kinase and stress-activated MAP-kinase cascades and (3) improved insulin responsiveness as assessed by GLUT4 recycling. Tbc1d1, a Rab-GAP implicated in exercise-induced GLUT4 translocation in skeletal muscle, also appeared to be phosphorylated on Ser231 after EPS-induced contraction. In addition, a switch in myosin heavy chain (MHC) expression from “fast-type” to “slow-type” was observed in the C2C12 myotubes endowed with EPS-induced repetitive contractility. Taking advantage of these highly developed contractile C2C12 myotubes, we identified myotube-derived factors responsive to EPS-evoked contraction including the CXC chemokines CXCL1/KC and CXCL5/LIX, as well as IL-6, previously reported to be up-regulated in contracting muscles in vivo. Importantly, animal treadmill experiments revealed that exercise significantly increased systemic levels of CXCL1/KC, perhaps derived from contracting muscle. Taken together, these results confirm that we have established a specialized muscle cell culture model allowing contraction-inducible cellular responses to be explored. Utilizing this model, we identified contraction-inducible myokines potentially linked to the metabolic alterations, immune responses and angiogenesis induced by exercise.
منابع مشابه
Contractile C2C12 myotube model for studying exercise-inducible responses in skeletal muscle.
Adequate exercise leads to a vast variety of physiological changes in skeletal muscle as well as other tissues/organs and is also responsible for maintaining healthy muscle displaying enhanced insulin-responsive glucose uptake via GLUT4 translocation. We generated highly developed contractile C(2)C(12) myotubes by manipulating intracellular Ca(2+) transients with electric pulse stimulation (EPS...
متن کاملIn vitro drug testing based on contractile activity of C2C12 cells in an epigenetic drug model
Skeletal muscle tissue engineering holds great promise for pharmacological studies. Herein, we demonstrated an in vitro drug testing system using tissue-engineered skeletal muscle constructs. In response to epigenetic drugs, myotube differentiation of C2C12 myoblast cells was promoted in two-dimensional cell cultures, but the levels of contractile force generation of tissue-engineered skeletal ...
متن کاملCharacterization of an Acute Muscle Contraction Model Using Cultured C2C12 Myotubes
A cultured C2C12 myotube contraction system was examined for application as a model for acute contraction-induced phenotypes of skeletal muscle. C2C12 myotubes seeded into 4-well rectangular plates were placed in a contraction system equipped with a carbon electrode at each end. The myotubes were stimulated with electric pulses of 50 V at 1 Hz for 3 ms at 997-ms intervals. Approximately 80% of ...
متن کاملEffect of Exercise Intensity on Isoform-Specific Expressions of NT-PGC-1 α mRNA in Mouse Skeletal Muscle
PGC-1α is an inducible transcriptional coactivator that regulates mitochondrial biogenesis and cellular energy metabolism in skeletal muscle. Recent studies have identified two additional PGC-1α transcripts that are derived from an alternative exon 1 (exon 1b) and induced by exercise. Given that the PGC-1α gene also produces NT-PGC-1α transcript by alternative 3(') splicing between exon 6 and e...
متن کاملType 1 Interferons Inhibit Myotube Formation Independently of Upregulation of Interferon-Stimulated Gene 15
INTRODUCTION Type 1 interferon (IFN)-inducible genes and their inducible products are upregulated in dermatomyositis muscle. Of these, IFN-stimulated gene 15 (ISG15) is one of the most upregulated, suggesting its possible involvement in the pathogenesis of this disease. To test this postulate, we developed a model of type 1 IFN mediated myotube toxicity and assessed whether or not downregulatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008